Forecasting NYC Street Speed using Weather Data

Levente Szabo, Yaowei Zong, Lingbo Ji

- Traffic prediction involves many features
- Predicting NYC Street Movement Speed based on previous data
- Understand the impact of weather conditions on street movement
- Help NYC Commuters and Uber Drivers

Datasets

- Uber Movement: NYC Street Speed (speed)
- NCEI (formerly NCDC): Local Climatological Dataset (weather)
- NYC Open Data: Motor Vehicle Collisions (crashes)

Milestones:

- 1. Getting data/2019 data into hdfs
- Getting 2019 and 2020 weather data into hdfs
- Processing 2019 Uber data into time series
- Processing 2019 weather data into date time row/column
- Joining uber/weather data or creating a database where we can access
- Running spark/python to create predictions

Dataset(Weather)

- Range: 2019-01-01 ~ 2020-03

- Size: 12119 + 2980 = 15099 Rows

124 Columns, comma divided

```
"72505394728","2019-12-30T16:04:00","FM-16","7",...,...,...."29.78","39","40","0.
05","RA:02 BR:1 |RA |RA",,,"97",,"OVC:08
7","29.61","0.75","40","040","18","13",...,...,"MET10812/30/19 16:04:02 SPECI
KNYC 302104Z 04011G16KT 3/4SM RA BR OVC007 04/04 A2978 RMK AO2 P0005
T00440039 $ RTX","FM-16","7",...,...,
```

```
[0] STATION
                "72505394728"
[1] DATE"2019-12-30T16:04:00"
[2] REPORT TYPE
                        "FM-16"
[3] SOURCE
[41] HourlyAltimeterSetting "29.78"
[42] HourlyDewPointTemperature
[43] HourlyDryBulbTemperature
                                 "40"
[44] HourlyPrecipitation "0.05"
[45] HourlyPresentWeatherType
                                "RA:02 BR:1 |RA
IRA"
[46] HourlyPressureChange
[47] HourlyPressureTendency
[48] HourlyRelativeHumidity
                                 "97"
[49] HourlySeaLevelPressure
[50] HourlySkyConditions "OVC:08 7"
[51] HourlyStationPressure"29.61"
[52] Hourly Visibility
                        "0.75"
[53] HourlyWetBulbTemperature
                                 "40"
[54] HourlyWindDirection "040"
[55] HourlyWindGustSpeed
                                "18"
[56] HourlyWindSpeed
[93] REM
                "MET10812/30/19 16:04:02 SPECI
KNYC 302104Z 04011G16KT 3/4SM RA BR OVC007
04/04 A2978 RMK AO2 P0005 T00440039 $ RTX"
[94] REPORT TYPE
                        "FM-16"
[95] SOURCE
[120] Sunrise
[121] Sunset
[122] TStorms
[123] WindEquipmentChangeDate
```

Dataset(Weather)

-SN:03 FZ:8 FG:2 |FG SN |

14.50

Light Snow FG: Fog Freezing

72505534726, 2013-12-50110.04.00, 1 W-10, 7,, 23.76, 33, 40, 0.05, NA.02 BN.1 [NA ,,, 37 ,
"72505394728","2019-12-30T16:11:00","FM-16","7",,"29.80","39","40","0.06","RA:02 BR:1 RA RA",,,"97",
"72505394728","2019-12-30T16:38:00","FM-16","7",,"29.81","38","39","0.16","+RA:02 BR:1 RA RA",,,"96",
"72505394728","2019-12-30T16:45:00","FM-16","7",,"29.81","37","39","0.18","RA:02 BR:1 RA RA",,,"93",
"72505394728","2019-12-30T16:49:00","FM-16","6",,"29.82","37","39",,"RA:02 BR:1 RA RA",,,"93",
"72505394728","2019-12-30T16:51:00","FM-15","7",,"29.81","38","39","0.17","-RA:02 BR:1 RA RA",,,"96","29.79",

		_

2019-12-30 18:00:00 37.50

	time	temp	precipitation	visibility	wind_gust	wind_speed	rain	snow	mist	fog	haze	freezing
8724	2019-12-30 15:00:00	39.75	0.03	2.19	22.00	10.50	2	0	1	0	0	0
		Control man	0.000.00000	10 1000	1100000 000000	100000000000000000000000000000000000000		2	22	1200	11200	22

8724	2019-12-30 15:00:00	39.75	0.03	2.19	22.00	10.50	2	0	1	0	0	0
8725	2019-12-30 16:00:00	39.33	0.12	1.75	25.67	14.67	3	0	1	0	0	0

7.00

0.01

8725	2019-12-30 16:00:00	39.33	0.12	1.75	25.67	14.67	3	0	1	0	0	0
8726	2019-12-30 17:00:00	39.00	0.03	7.00	39.00	23.00	1	0	0	0	0	0

32.50

External Data Sources

Fig 1. NYC Weather 2019

Fig 2. NYC Daily Crash 2019-2020

Almost 72 GB in total with a lot of null values.

Step1

- Selecting useful columns from the original dataset and convert them into a specified format:
- (Key: start_node_id, end_node_id
 Value: speeds in time series format)

Result:

Step2

- For each road, calculating the average speed for each hour of a day(24 hours).
- Filling in the null values according to the corresponding hour.

Result:

Null values was filled.

 If a road still has some null values, calculating the average speed and using the result to replace null.

Step3

Methods

- To test the efficacy of using weather features and traffic collisions
- Fbprophet- Out of the box time series forecasting model
 - y(t) = trend(t) + seasonality(t) + holiday_effects(t) + e
 - Can add additional regressors to account for weather conditions and collisions
- PySpark: We need a way to interface between data stored in Spark and Fbprophet forecasting model.
- Next, we run a baseline model against our proposed solution and calculate the RMSE over the testing period
- Hyperparameters:
 - o Trend: Linear
 - Seasonality: Additive, Multiplicative
 - Added Regressors: Additive, Multiplicative

- Minimal effect of weather features pushed us to test a range of hyperparameters and include the daily crash data.
- Lockdown effects during march cause high error for the baseline model.
- Top: Model 1: Baseline Bottom: Model 2: Added Regressors
- Squared Residuals over Validation Set

- Plotting model components allow us to see learned parameters for specific time series and hyperparameters.
- Trend: In this case we learn a linear data trend over the period
- Seasonality: We can see the weekly and yearly fluctuations
- Additional Regressors: Multiplicative regressors produce a dilation of the speed.

Model Comparisons

- Added regressors outperformed baseline model in all cases.
- Best model was using a linear trend with multiplicative seasonality and added regressors.

Results

- Testing with N = 295
 - Model 1 Baseline : Average RMSE = 19.55
 - Model 2 Added Regressors : Average RMSE = 16.55
- Formatted PySpark function to produce predictions or error calculations over specified subset of the data and desired forecasting period.

https://www.openstreetmap.org/

- Randomly selected 15 nodes.
- Formed 15 interconnected roads.

• Threshold: March 1st.

First part of testing data:

- o Blue line: Original data
- Orange line: Prediction
- Error: 10.20

Second part of testing data:

- Green line: Original data
- Red line: Prediction
- Error: 19.63

After add new feature(crash data):

Conclusion and Further Steps

Conclusion:

- Speed prediction model
- Weather features we selected has no obvious improvement on result of prediction model while traffic collisions did

• Further steps:

- Try more features in the weather dataset and use the weather forecasting data.
- Try to find out some other feature that may impact the speed prediction result.(Pandemic Impact, etc.)
- User input queries and application

Q&A

Thank you for listening to our presentation.

Are there are any questions?