
Implementation and Evaluation of the DANCER Framework for
Academic Article Summarization

Aathira Manoj
New York University
am10245@nyu.edu

Levente Szabo
New York University
ls5122@nyu.edu

Minji Kim
New York University
mk7773@nyu.edu

Abstract

Document summarization for academic arti-
cles is complicated by the document length,
diversity and specialization of its vocabu-
lary. The DANCER (Divide ANd ConquER)
framework exploits the discourse structure of
the document and uses sentence similarity to
break a long document and its summary into
multiple source-target pairs, which are used
to train a summarization model. We assess
the efficacy of the DANCER framework by
using Pointer Generator as the summarization
model and pairing it with different scoring met-
ric (ROUGE-L, BLEU) for generating train-
ing samples. We evaluate its performance
against a baseline model, which does not use
DANCER. We use a subset of the publicly
available arXiv dataset for our experiments.
Code is available at https://github.com/
ls5122/ArxivSummary.

1 Introduction

Automatic summarization has been recognized as
one of the most important natural language process-
ing tasks, as information in the modern digital age
is very enormous requiring well designed storage,
retrieval and compression. Being able to produce
informative and well-written document summaries
has the potential to greatly improve the success
of both information discovery systems and human
readers that are trying to quickly skim large num-
bers of documents for important information.

Therefore, in previous years, there are various
and plenty of progress in neural summarization, but
the majority of them have been focusing on short
pieces of text such as news articles (CNN/Daily
Mail dataset (Hermann et al., 2015)), for which
input texts are on average 600 words long and ab-
stracts are less than 100 words long. Summariza-
tion of longer documents, such as research papers,
is very different from newswire summarization,

with input text ranging from 2,000 to 7,000 words
and the summaries exceeding 200 words. Seq2seq
models tend to struggle with longer sequences be-
cause at each decoding step, the decoder needs to
learn to construct a context vector capturing rele-
vant information from all the tokens in the source
sequence (Sha et al., 2016) leading to much higher
noise.

The Divide-ANd-ConquER (DANCER) (Gidio-
tis and Tsoumakas, 2020) framework exploits the
discourse structure of long documents, by working
on each section separately. It does so by decompos-
ing the summary of the document into sections and
pairing it with the appropriate sections in order to
create distinct target summaries. A neural network
model is then trained to learn to summarize each
part of the document separately using these target
summaries. Finally, the partial summaries gener-
ated by the model are then combined to produce a
final complete summary. This leads to a decomposi-
tion of the long document summarization problem
into simpler summarization problems that are eas-
ier to learn and is less computationally complex
and in the process creating more training examples
having lesser noise in the target summaries when
compared to the standard approach.

Academic articles are an ideal candidate for long
document summarization because the paper ab-
stract can serve as a label or a candidate summary
for the paper. Additionally many papers follow a
general structure with Introduction, Methods, Re-
sults and Conclusion being common sections in
most articles. We can improve the summarization
output and reduce computational costs by taking
advantage of this common structure.

2 Related Works

The majority of past work in text summariza-
tion has been extractive (Aakash Sinha, 2018),

https://github.com/ls5122/ArxivSummary
https://github.com/ls5122/ArxivSummary

Figure 1: (a) Generating samples for training DANCER (b) Generating summary using DANCER

(Yong Zhang, 2016) where systems form sum-
maries by copying and rearranging passages from
the original text. Abstractive summarization where
novel text is generated is a more challenging task
with a number of advances so far. These include
abstract summarization under DANCER (Gidiotis
and Tsoumakas, 2020), BERT (Yang Liu, 2019),
Pointer Generator Networks (See et al., 2017). For
an overall review of extractive and abstractive sum-
marization, see (Mehta, 2016).

3 Methods

3.1 Problem Statement
Our goal is to evaluate and compare the perfor-
mance of DANCER by using different scoring met-
rics for splitting the document summary into differ-
ent sections. In particular, we use ROUGE-L (Lin,
2004) and BLEU (Papineni et al., 2002) to gener-
ate the section-wise summaries from the main sum-
mary for training. We use the Pointer Generator,
based on the sequence-to-sequence RNN paradigm,
as the main summarization model. Finally, we
compare the performance of the DANCER model
with a baseline model, which also uses Pointer
Generator, but does not split the main summary
into section-wise summaries. We use a subset of
the publicly available pre-processed ArXiv dataset
(Cohan et al., 2018) for our experiments. The per-
formance of different models is evaluated using
ROUGE scores.

3.2 Approach
A general outline of our approach is given below.

1. Use the DANCER method to generate train-
ing datasets using the ROUGE-LCS score and
the BLEU-Corpus score. Generate a baseline
dataset which does not use this approach.

2. Train Pointer Generator Seq2Seq summarizer
separately on all these datasets.

3. While testing, use the trained weights of the
Pointer Generator model to generate section-
wise summaries and concatenate them to gen-
erate the final summary .

4. Evaluate the different models according to
different ROUGE scores.

DANCER: The steps for training using the
DANCER framework are outlined in Figure 1. Dur-
ing training the DANCER approach requires some
data pre-processing steps. We wish to divide the
abstract (gold label summary) into summaries for
the Introduction, Literature, Methods, Results and
Conclusion. Since the section names of most aca-
demic articles do not line up perfectly with our
desired sections our first step is to try to label and
potentially merge the article sections.

To do this we use simple keyword matching by
labelling each section according to the maximal
matches from a fixed set of keyword for each of
our desired sections. Keywords used are shown
in Table 1. If a section name does not match any
of the keyword then we skip it. Additionally, any
sections with the same label are merged.

Once we have isolated our desired sections we
need to partition the abstract into multiple summary
labels (one for each section). To do this we focused
on two specific metrics, the ROUGE-LCS score
and the BLEU-Corpus level score. Between each
sentence of the abstract ai and each sentence of a
specific section skj The ROUGE-LCS is the length
of the longest common subsequence divided by the
length of the the section sentence.

Figure 2: Pointer Generator Summarization Model

ROUGE-LCS(ai, skj) =
|LCS(ai, skj)|
|skj |

We assign summary sentence ai to the section
sk∗ where the section contains the sentence pro-
ducing the maximal ROUGE-LCS precision.

The BLEU-Corpus level score consists of cal-
culating n-gram level precisions over multiple sen-
tences. For every sentence in the abstract we calcu-
late its BLEU score for each section. The BLEU
score uses n-gram precision scores and correspond-
ing weights along with a penalty term to compute
the final score.

The ROUGE and BLEU scores produce differ-
ent splits in the abstract (Figure 3). While a ma-
jority of the abstract sentences are assigned to the
Introduction there is some variation in how other
sections are represented, notably using the BLEU
score resulted in lower counts for the Introduction.
To produce more coherent results we excluded the
Literature section.

Pointer Generator: The Pointer Generator is a
sequence to sequence neural model that provides
abstract text summarization (Figure 2). The model
consists of an encoder and decoder phase. Through
a combination of pointing at words in the source
and generating words from the vocab distribution
this model can be seen as a hybrid summarization
model. The model uses a coverage mechanism to
minimize the repetition of copied words.

The input source text is embedded and fed into
a bidirectional LSTM, the red network in Figure
2. This network serves as the encoder and pro-
duces a set of hidden states hi. Decoding takes
place one token at a time. For each timestep the
decoder gives rise to decoder states st which dur-
ing training correspond to the word embedding of
the previous word. Together these combine to cre-
ate the attention distribution using the parameters
Wh,Ws, battn, v

eti = vT tanh(Whhi +Wsst + battn) (1)

at = softmax(et) (2)

Next using the attention distribution the context
vector h∗t is constructed as a dot product between
the attention distribution and the hidden states. The
attention distribution guides the decoder towards
the next word while the context vector serves to
produce the distribution over all words in the vo-
cabulary pvocab as well as the pointer generator
probability pgen which gives us the option to copy
words from the source text.

By concatenating the context vector with the
decoder state st we get pvocab

pvocab = softmax(V ′(V [st, h
∗
t] + b)b′) (3)

With V ′, V, b, b′ all parameters. The pointer gen-
erator takes as input the context vector and the
decoder states and decoder inputs. The parameters
are wT

h , w
T
s , w

T
x , bptr

Section Keywords
introduction introduction , case

literature background , literature , related
methods method , methods , technique , techniques , methodology
results result , results , experimental , experiment , experiments

conclusion conclusion , conclusions , concluding , discussion , summary , limitations

Table 1: Section Keywords

Figure 3: Partition of the document abstract into different sections

pgen = σ(wT
h h
∗
t + wT

s st + wT
x xt + bptr) (4)

The source distribution of a word is computed
psource(w), this allows us to select ideal word to
copy from the source text according to the attention
distribution. It is a result of summing the attention
distribution over all words wi = w. Finally the
decoder, the yellow network in Figure 2 produces
a token according to

p(w) = pgen · pvocab + (1− pgen) · psource (5)

Decoding During the testing phase the
DANCER framework applies the trained Pointer
Generator summarizer in parallel to the article
sections. Then the section summaries are con-
catenated to construct the final article summary
which is tested against the abstract along a variety
of metrics to determine the effectiveness of the
summary.

4 Experimental Setup

4.1 Dataset

We use structured long documents from the arXiv,
a free distribution service for scholarly articles.
For training and testing, we use a subset of pre-
processed, publicly available arXiv documents.
provided courtesy of Cohan et al. (Cohan et al.,
2018). The entire document set is 7.07 GB and
contains 215,913 documents in addition to a vo-
cabulary file. We use a subset of 8000 articles for
training and 1000 articles for validation and testing.
Each document contains the abstract, the article
and a list of section names.

We have grouped similar sections together by
the keywords used to describe them, as shown in
Table 1. All sections do not equally contribute
towards the final summary, as shown in Figure 3.
Usually, the literature section is not essential when
trying to summarize the main points of the article.
On the other hand, sections like the introduction
and conclusion usually include quite a lot of the
important information that we want to include in

Model ROUGE-1 ROUGE-2 ROUGE-L
DANCER with ROUGE-L and Ptr Gen 37.01 12.77 21.21
DANCER with BLEU and Ptr Gen 34.78 12.30 20.44
Baseline 0.62 0.001 0.60

Table 2: ROUGE F1 results for different models.

Figure 4: Example abstract generated using DANCER framework

the summary. Therefore, we have used only those
sections while generating the training samples as
well as during testing.

4.2 Implementation Details

All the 3 datasets were trained using Pointer Gen-
erator model.Our Pointer-Generator model is im-
plemented in Pytorch and is based on the original
Tensorflow implementation (See et al., 2017). The
hyperparameter selection is similar to the setup
suggested in (See et al., 2017). Our model has
a bidirectional LSTM layer of 256 units for the
encoder and a unidirectional LSTM layer of 256
units for the decoder. We restrict the vocabulary to
50,000 word tokens for both the input and output
and use word embeddings of size 128. No pre-
trained word-embeddings are used. A batch size of
16 is used for training. We used Adagrad (Duchi
et al., 2011) with 0.15 learning rate and initialize
the accumulator to 0.1. We clip the gradients to
have a maximum norm of 2, but avoid using any
regularization.

We trained all the three models for 50, 000
epochs with coverage turned on after 40, 000. For
training, input sequences are truncated to 400 word
tokens while padding the shorter ones with zeros
to the same length. The decoder outputs were re-
stricted to 100 words. For the prediction phase,

we use beam search decoding with 4 beams and
generate a maximum of 100 tokens per section.

The models were evaluated using ROUGE (Lin,
2004) F1 scores. The results are can be seen in
Table 2.

5 Results

Based on the results shown in Table 2, it is evi-
dent that DANCER provides a significant improve-
ment in ROUGE F1 scores. Generating section-
wise summaries using ROUGE-L for training pro-
duces better ROUGE F1 results than by generating
section-wise summaries using BLEU scores. The
summaries produced by both the metric are more
similar to each other than to the actual summary.

The summary generated by DANCER as shown
in Figure 4, after training for 50, 000 epochs on just
8000 samples using ROUGE-L to generate section
is quite impressive. It manages to generate a lot of
words occurring in the actual abstract e.g. ”nematic
liquid crystals”, ”strong anchoring”, ”effective
free energy”, ”patterned” etc. It also generates
words not in the actual abstract e.g. ”homeotropic”,
which is one of the ways of alignment of liquid
crystal molecules, seemingly relevant to the topic
of the research article. The word is not a common
one and not part of the vocabulary and must be
copied from the article. We suspect the pointer

mechanism to be responsible for it.
However we also see some repetitions (marked

in red) e.g ”cell cell”, ”nematic liquid crystal” .
We suspect the lack of training with the coverage
turned on (only 10,000 epochs) to be the cause of
this.

Refer to Appendix A for example summaries
produced when different metrics (ROUGE-L and
BLEU) are used with DANCER.

6 Conclusion and Future Work

Summarizing long documents is a very different
problem to newswire summarization, requiring
much higher computational complexity, making
it extremely hard to train models that have enough
capacity to perform this task. DANCER is a sim-
ple yet effective extension that can boost the per-
formance of different summarization models with
minimal additional effort and resources. DANCER
framework allows different methods to be used for
section-wise summary generation for training and
can be used with various summarization models. In
this paper, we have evaluated its performance when
using ROUGE-L and BLEU for generating train-
ing samples and Pointer Generator section-wise
summarization against a baseline model. Based on
our experiments, we observed a notable improve-
ment in ROUGE F1 scores when using DANCER.
ROUGE-LCS produces better ROUGE F1 scores
than BLEU score.

In future work, we would like to:

• Try more complex summarization models like
Transformers based models. It can also be
combined with other sophisticated methods
that perform sentence extraction before the
main summarization process, since it has been
observed that pointer neural networks some-
times struggle at selecting relevant parts of the
input.

• Exploring more sophisticated methods that
use machine learning to identify the type of
each section. These methods become more
relevant when not dealing with academic doc-
uments and needs to be extended to other do-
mains.

• Use a machine learning model to make the
decision if a given section should be included
in the summary

References
Akshay Gahlot Aakash Sinha, Abhishek Yadav. 2018.

Extractive text summarization using neural net-
works.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Na-
zli Goharian. 2018. A discourse-aware attention
model for abstractive summarization of long docu-
ments. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 615–621,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. 12(null):2121–2159.

Alexios Gidiotis and Grigorios Tsoumakas. 2020. A
divide-and-conquer approach to the summarization
of long documents.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In Advances in Neural Informa-
tion Processing Systems, volume 28, pages 1693–
1701. Curran Associates, Inc.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Parth Mehta. 2016. From Extractive to Abstractive
Summarization: A Journey. pages 100 – 106, Berlin,
Germany. Association for Computational Linguis-
tics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic
evaluation of machine translation. ACL ’02, page
311–318, USA. Association for Computational Lin-
guistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks.

Lei Sha, Jing Liu, Chin-Yew Lin, Sujian Li,
Baobao Chang, and Zhifang Sui. 2016. RBPB:
Regularization-based pattern balancing method for
event extraction. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1224–
1234, Berlin, Germany. Association for Computa-
tional Linguistics.

Mirella Lapata Yang Liu. 2019. Text summarization
with pretrained encoders.

Mahardhika Pratama Yong Zhang, Joo Er Meng. 2016.
Extractive document summarization based on convo-
lutional neural networks. IEEE.

http://arxiv.org/abs/1802.10137
http://arxiv.org/abs/1802.10137
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
https://doi.org/10.18653/v1/N18-2097
http://arxiv.org/abs/2004.06190
http://arxiv.org/abs/2004.06190
http://arxiv.org/abs/2004.06190
https://proceedings.neurips.cc/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/P16-3015/
https://www.aclweb.org/anthology/P16-3015/
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1704.04368
http://arxiv.org/abs/1704.04368
https://doi.org/10.18653/v1/P16-1116
https://doi.org/10.18653/v1/P16-1116
https://doi.org/10.18653/v1/P16-1116
http://arxiv.org/abs/1908.08345
http://arxiv.org/abs/1908.08345
https://ieeexplore.ieee.org/abstract/document/7793761
https://ieeexplore.ieee.org/abstract/document/7793761

A Appendices

Examples of Generated Summaries

