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Abstract

We introduce a geometry-aware framework for modeling financial market states using a β-
Variational Autoencoder (β-VAE). Standard Euclidean representations often fail to capture
the non-linear structure of market dynamics. By treating the decoder as a parameterization
of a latent manifold, we compute local Riemannian metrics via Jacobians and use these
to define geodesic distances. This reveals intrinsic curvature in the learned representation,
confirmed both visually and quantitatively. Compared to Euclidean clustering, geodesic
K-means improves Silhouette score from 0.07 to 0.50 and halves the Davies–Bouldin index,
validating the manifold hypothesis for financial time series.

1 Introduction

Modeling the behavior of financial markets is notoriously difficult: high-dimensional, noisy
data obscures the low-dimensional structure that governs long-term dynamics. The manifold
hypothesis suggests that high-dimensional financial observations lie near a smooth, non-linear
manifold embedded in ambient space [1]. Regime shifts, coordinated sector moves, and systemic
stress all suggest that daily price movements evolve along a latent manifold—one that is smooth
but intrinsically curved.

This work proposes a framework for uncovering and analyzing that manifold. We apply
a β-Variational Autoencoder (VAE) to compress daily market states into a structured latent
space, and we treat the decoder as a parameterization of a Riemannian manifold. By comput-
ing geodesic distances using the Jacobian of the decoder, we reveal how curvature influences
distance, clustering, and temporal structure.

1.1 Training a Stable Latent Geometry

While the β-VAE framework 2 provides a principled route to latent factor modeling, training
on real-world market data introduces unique instabilities. We encountered three persistent
challenges that degrade the quality and interpretability of the learned geometry:

1. Posterior collapse, where the encoder’s output distribution converges to the prior and
ceases to carry useful information.

2. Latent correlation, where the latent dimensions are highly redundant or aligned, vio-
lating the assumption of isotropic structure in the prior and making geometric analysis
ill-posed.

3. Capacity mismatch, where the KL divergence is either too constrained or too loose at
various stages of training, leading to underuse or over-regularization of the latent space.

∗Code available at: github.com/levbszabo/market-latent-geometry
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Figure 1: Geometry-Aware Market Analysis Framework. Left: The β-VAE pipeline
transforms high-dimensional market data into a 12-dimensional latent space with specialized
loss components for stability and disentanglement. Right: The learned latent manifold M
exhibits intrinsic curvature, where geodesic distances (curved green path) respect the manifold
geometry while Euclidean distances (red dashed line) do not. The metric tensor G(zi) captures
local geometric properties enabling curvature-aware analysis.

To mitigate these challenges, we adopt a multi-component loss function:

L = Lrecon + β · |DKL − C|+ λ · ||Cov(µz)− I||2F (1)

KL Capacity Scheduling. We gradually increase the target KL divergence C over training
time. This allows the model to begin learning meaningful reconstructions before being asked to
match the prior distribution too closely. Early capacity ramp-up helps prevent collapse, while
late-stage saturation encourages efficient use of the latent space.

Orthogonality Penalty. We regularize the covariance matrix of the latent means µz to ap-
proach the identity matrix. This promotes disentangled and uncorrelated latent factors—essential
for using the decoder Jacobian as a reliable local chart of the manifold.

β Scaling. By setting β = 1.0, we control the strength of regularization relative to recon-
struction fidelity. A higher β imposes greater structure on the latent space, while a lower value
allows more flexibility but risks overfitting.

1.2 Related Work and Our Contributions

Prior works have applied deep generative models to financial time series. For example, recurrent
latent-variable models for sequences [Chung et al., 2015] [3] and recent VAE-based approaches
tailored to finance [Acciaio et al., 2024; Wang, Guo, 2024] [4, 5] aim to capture market dynamics,
while GAN-based methods [Wiese et al., 2020] [6] focus on realistic data generation and stylized
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facts. However, these methods largely treat latent space as Euclidean and do not address its
underlying geometric structure. In contrast, our approach explores the latent market manifold
geometry explicitly.

This work presents a principled yet practical approach to learning geometry-aware representa-
tions of financial markets using a β-VAE. Our key contributions are:

1. A Stable Training Pipeline for Financial β-VAEs. We design a robust architecture
and loss strategy that overcomes posterior collapse, latent entanglement, and KL imbal-
ance—common failure modes when applying VAEs to financial time series. By combining
KL capacity scheduling with an orthogonality regularization term, we ensure that the
latent space remains both informative and statistically well-structured.

2. Latent Geometry via Decoder Jacobians. We treat the VAE decoder as a param-
eterization of a learned manifold and compute the Riemannian metric tensor from its
Jacobian. This enables local geometric analysis of the latent space, including distance
and curvature estimation.

3. Empirical Evidence of Market Curvature. We provide strong quantitative support
for the existence of curvature in the latent market manifold. Geodesic distances diverge
nonlinearly from Euclidean ones.

4. A Foundation for Downstream Generative and Policy Learning. While we briefly
considered defaulting to a pure autoencoder (i.e., β = 0) due to early training instabil-
ity, we show that a properly tuned β-VAE yields a smooth, probabilistic latent space.
This unlocks future work in generative modeling, forecasting, and reinforcement learning
directly on the manifold.

2 Methodology

Our goal is to learn a smooth, interpretable latent representation of financial market states that
supports geometric analysis. This section describes our dataset construction, model architec-
ture, loss design, and the geometric tools we apply to the learned representation.

2.1 Data Construction

We use five years of daily data for all 503 stocks in the S&P 500 index. For each trading day,

we compute two features per stock: Log returns: log
(

Pt
Pt−1

)
Log volume: log(Vt)

To ensure numerical stability and facilitate convergence, we apply global z-score normaliza-
tion to all features:

x̃i,t =
xi,t − µtrain

σtrain
(2)

Where µtrain and σtrain are the mean and standard deviation computed exclusively from
the training set. This normalization is applied consistently across training, validation, and
test splits to prevent data leakage. Concatenating these features across all stocks yields a
1006-dimensional input vector x ∈ R1006 representing a single day in the market. Each input
captures the cross-sectional state of the market at a specific point in time. The dataset includes
approximately 1250 trading days, which we split chronologically into training (80%), validation
(10%), and test (10%) sets.
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2.2 Model Architecture

We use a symmetric Variational Autoencoder (VAE) with the following structure 7:

• Encoder: 1006 → 256 → 128 → 12 (latent mean and variance)

• Decoder: 12 → 128 → 256 → 1006

We use ReLU activations and dropout in all layers. The encoder learns a variational distri-
bution qϕ(z|x), and the decoder defines a mapping gθ(z) that reconstructs the input. The latent
space z ∈ R12 is trained to capture essential structural variation in the market while remaining
geometrically meaningful.

2.3 Loss Function and Training Strategy

Training VAEs on financial data is challenging due to instability, posterior collapse, and over-
regularization. We adopt a custom objective that explicitly controls capacity and encourages
disentanglement. This strategy is similar in spirit to encouraging factorized, independent latents
as in FactorVAE [Kim & Mnih, 2018][8] and β-TCVAE [Chen et al., 2018]9.

L = Lrecon + β · |DKL − C|+ λ · ∥Cov(µz)− I∥2F (3)

L = Lrecon + LKL + Lortho (4)

Reconstruction Loss (Lrecon). The primary objective is to ensure the latent variables con-
tain sufficient information to reconstruct the input. We use the standard Mean Squared Error
(MSE):

Lrecon = Eqϕ(z|x)[||x− gθ(z)||2] (5)

where gθ(z) is the output of the decoder.

Capacity-Controlled KL Divergence (LKL). To prevent the KL term from vanishing
(posterior collapse) while still providing regularization, we adapt the loss to include a capacity
term, C. This encourages the model to use a specific amount of informational capacity.

LKL = β · |DKL(qϕ(z|x)||p(z))− C| (6)

Here, p(z) is the prior, typically N (0, I), β is the weight of the term, and we set the capacity
C = 4.0. This forces the KL divergence away from zero, ensuring the latent variables are
utilized.
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Orthogonality Penalty (Lortho). To encourage disentangled and interpretable latent fac-
tors, we add a penalty that forces the covariance matrix of the latent means (µz) to be close to
the identity matrix.

Lortho = λ · ||Cov(µz)− I||2F (7)

This penalty, weighted by λ = 1 × 10−4, explicitly decorrelates the learned latent dimensions.
We set β = 1.0, gradually increase C to a final value of 4.0, and apply a small orthogonality
penalty λ = 1× 10−4 during training.

2.4 Latent Diagnostics: Normality & Independence

Before performing geometric analysis on the latent space, we first verify that the latent vari-
ables adhere to two essential assumptions of the VAE framework: (1) they are approximately
marginally standard normal, and (2) they exhibit minimal pairwise correlation. These prop-
erties are critical to ensure that the learned representation respects the prior distribution and
that the local Riemannian metric G(z) = J⊤J is well-behaved and interpretable.

Interpretation. These results confirm that our model produces a latent space that is both
statistically aligned with the prior and geometrically stable. The distributions are unimodal,
symmetric, and centered around zero, with minimal skew or heavy tails. Likewise, the weak
correlations across latent dimensions indicate successful disentanglement, made possible by the
orthogonality regularization term. This decorrelation ensures that the local metric G(z) is not
distorted by redundant directions and supports accurate geodesic distance computation and
curvature estimation in the following sections.

2.5 From Latent Space to Riemannian Manifold

Once the VAE is trained, we treat the decoder g : Z → X as a learned parameterization of the
market manifold. This allows us to perform explicit geometric analysis.
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(a) Marginal Normality. Histograms for each of the 12 latent dimensions,
overlaid with the N (0, 1) probability density function (dashed line).

(b) Latent Independence. Left: empirical correlation matrix of the latent
means µz. Right: distribution of off-diagonal correlation coefficients. The
mean absolute correlation is 0.032, with a maximum of 0.065—both indicating
low redundancy between dimensions.

Computing the Riemannian Metric. The geometry of the manifold is encoded in the
Riemannian metric tensor, G(z), which defines a local inner product at each point z in the

latent space. We compute it from the decoder’s Jacobian, J(z) = ∂g(z)
∂z ∈ R1006×12, which

measures how an infinitesimal change in the latent space z affects the output data space x. The
metric tensor is then given by:

G(z) = J(z)TJ(z) ∈ R12×12 (8)

This matrix acts as a local ”ruler,” defining distances and angles on the manifold following
the information-geometric interpretation of the decoder mapping [Amari (2016)]10. A similar
pullback metric approach was used by Arvanitidis et al.(2018) 11 to demonstrate that VAE
latent spaces can have significant curvature.

2.6 Approximating Geodesic Distance

With a Riemannian metric defined at each point in latent space, we can approximate distances
that respect local curvature. Rather than using standard Euclidean distance ∥zi − zj∥2, we
apply a first-order local approximation derived from the metric tensor G(z).

dgeo(zi, zj) ≈
√
(zi − zj)⊤G(zi) (zi − zj) (9)
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This formulation evaluates the local metric at the source point zi, resulting in a Mahalanobis-
like distance that accounts for anisotropic stretching or compression induced by the decoder.
To ensure symmetry for downstream tasks like clustering or embedding, we assign this value to
both entries in the distance matrix:

dgeo(zi, zj) = dgeo(zj , zi) :=
√

(zi − zj)⊤G(zi) (zi − zj)

Although this does not strictly equal the average of the two one-sided distances, we found
the approximation sufficient in practice. It provides a curvature-aware alternative to Euclidean
distance with minimal additional computational cost. We note that it is still a first-order ap-
proximation. More exact approaches compute true geodesics by integrating along the manifold
or employ specialized solvers for shortest paths on learned manifolds [Arvanitidis et al., 2019]
12. We choose the simpler approximation for efficiency, noting that these more precise methods
could improve long-range accuracy at higher computational expense.

Figure 3: Geodesic vs. Euclidean Distances. Each point represents a pairwise comparison
between latent vectors zi and zj .

3 Exploratory Geometry-Aware Clustering

With a curved latent manifold in hand, we ask a pragmatic question: does a curvature-respecting
distance yield clusterings that look more coherent than those obtained with flat metrics? To
explore this, we contrast three k-means variants, all run with k = 5 and identical random seeds:

1. Euclidean: vanilla k-means on the 12-D latent codes;

2. Geodesic: k-means on a metric-MDS embedding of the pairwise geodesic distances.

3. PCA: k-means on the first five principal components of latent space (54.3% variance
retained).
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3.1 Internal validity scores

We assess cluster quality using three widely adopted internal metrics:

• Silhouette Score: Measures the cohesion and separation of clusters. Values near 1
indicate tight, well-separated clusters; values near 0 suggest overlapping or ambiguous
assignments.

• Calinski–Harabasz Index (CH): Compares between-cluster dispersion to within-cluster
dispersion. Higher values indicate more distinct, well-separated clusters.

• Davies–Bouldin Index (DB): Quantifies average similarity between clusters. Lower
values suggest better separation and compactness.

Figure 4: Internal clustering diagnostics. Evaluation of three clustering meth-
ods—Euclidean, Geodesic, and PCA-based—across standard metrics: Silhouette, Calin-
ski–Harabasz (CH), and Davies–Bouldin (DB).

Figure 4 compares clustering performance across the three approaches. The geodesic method
shows large apparent gains across all metrics: Silhouette improves from 0.07 (Euclidean) to 0.50,
CH from 64 to 1,817, and DB falls from 2.57 to 0.60.

A label-randomisation test with 1 000 permutations confirms that every pairwise metric
difference is highly significant (all p < 10−3; Bonferroni-corrected α=0.0167). The results are
consistent with the geometric hypothesis that the latent manifold is curved, and that geodesic
distances better reflect its internal structure. This is consistent with prior observations as well
[Yang et al.] (2018) 13 found that clustering latent representations using geodesic distances
produced more semantically coherent groupings compared to Euclidean distances. Further
validation of our time series based market manifold clustering can be achieved through either
larger datasets or downstream predictive tasks.
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3.2 Cluster morphology

Figure 5: Decision surfaces in two-dimensional embeddings. For each distance choice we
embed the latent points in R2 (MDS for Euclidean and geodesic, first two PCs for PCA), train
a k-NN classifier on the resulting cluster labels, and colour the background by the predicted
class. Geodesic clusters unwrap into elongated bands that follow the manifold’s main bend,
whereas Euclidean and PCA clusters remain roughly spherical and frequently overlap.

The decision surface visualises why the internal indices favour a curvature-aware distance. Be-
cause the geodesic metric “stretches” space along directions where the decoder is locally com-
pressed, k-means discovers bands that align with the intrinsic U -shape rather than cutting
across it. With a flat metric, the same algorithm sees an almost isotropic cloud and produces
overlapping, disk-like regions. Similarly, Yang et al. (2018) [13] observed that geodesic latent
clusters captured meaningful variations that flat-space clustered missed.
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3.3 Temporal coherence

Figure 6: Temporal colour-coding of clusters. Top: points coloured by cluster label. Bot-
tom: the same points coloured by time index (purple→ yellow). Only the geodesic embedding
shows a roughly monotone march through time, hinting at regime segmentation.

Colouring points by chronological order reveals that geodesic clusters partition the latent trajec-
tory into contiguous temporal blocks, whereas Euclidean and PCA splits appear more arbitrary.
This temporal coherence supports (but does not yet prove) the idea that curvature-aware dis-
tances isolate market regimes.
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3.4 Three-dimensional perspective

Figure 7: 3-D snapshot of geodesic clusters. Metric-MDS coordinates 1–3, coloured by
k-means label. Clusters occupy smoothly curved sheets rather than intersecting spheres. An
interactive version is provided in the supplement.

The 3-D view illustrates how clusters fan out along the manifold rather than piling up near the
origin. This qualitative evidence complements the internal scores, reinforcing the exploratory
claim that respecting curvature yields more interpretable groupings.

Interim takeaway. Geometry-aware distances appear promising for unsupervised regime discov-
ery, but larger samples and out-of-sample tests are required before the method can be deemed
production-ready.

4 Discussion and Outlook

The exploratory results in Section 3 show that a curvature–aware distance can sharpen unsu-
pervised structure in the latent space of financial time–series. At the same time, our sample is
modest and the statistical support remains preliminary. Below we clarify what these findings
imply, outline concrete next steps, and note key limitations.

4.1 Market-regime interpretation

Every latent point already carries the full cross-section of log returns and log volumes for all
stocks in SP500, so each cluster implicitly embeds a rich panel of raw market data. A natural
next step is therefore to describe each regime Rk with financially interpretable statistics—e.g.
average index-level return, cross-sectional volatility, sector tilts, or liquidity measures—and then
examine how those quantities evolve when the trajectory moves from one cluster to another.
We also intend to analyze the latent feature vectors and determine a quantitative approach for
determining their financial relevance (e.g Volatility, Fear, etc.)
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4.2 Scenario generation and stress testing

Interpolation along geodesic paths yields realistic market scenarios that honour latent curvature,
unlike straight-line walks that traverse low-density regions. Regulators and risk managers could
sample stress trajectories between present conditions and extreme historical regimes to compute
VaR or expected shortfall under coherent dynamics.

4.3 Geometry-aware reinforcement learning

Standard RL penalises L2 distances in action or state space; replacing these with geodesic penal-
ties would discourage agents from taking actions that move the market into high-curvature (un-
stable) regions. The differentiable β-VAE decoder further allows gradient-based policy updates
directly through the manifold.

4.4 Limitations

• First-order distance—Our approach ignores metric variation along the path. Higher-order
or numerical geodesics would improve long-range accuracy.

• Feature choice — We used log-returns and volumes only. Extending to options data or
order-book states may uncover richer geometry.

• Sample size — the 1 250-day window limits statistical testing power. Rolling-window
experiments are required to confirm robustness.

4.5 Future Research Directions

This work establishes a new foundation for geometry-aware quantitative finance. Several excit-
ing research avenues are now open:

• Generative Modeling: One can sample along geodesic paths between two market states
to generate realistic, plausible transition scenarios for stress testing and risk analysis. This
is superior to linear interpolation in the latent space, which would traverse regions the
market never visits.

• Reinforcement Learning on Manifolds: A trading agent’s policy could be optimized
directly on the learned manifold. The geodesic distance could serve as a more meaningful
penalty for large actions, and the curvature could inform the agent about local market
stability.

• Curvature as a Risk Indicator: The local curvature of the manifold could itself be
a novel risk factor. A systematic increase in curvature might precede periods of high
volatility or market crashes, serving as an early-warning signal.

• Generalization: The framework presented here is general and can be applied to other
financial markets, such as foreign exchange, commodities, or cryptocurrencies, to explore
and compare their intrinsic geometries.

Take-away: respecting intrinsic geometry transforms a simple clustering task into a powerful
regime-detection tool and opens a path toward fully geometry-aware market simulators and
control algorithms.
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4.6 Conclusion

We introduced a β-VAE that maps daily cross-sectional returns and volumes onto a twelve-
dimensional latent manifold. Jacobian-based metrics reveal clear curvature, and a geodesic
K-means built on that metric yields tighter, more chronologically ordered market clusters than
Euclidean or PCA baselines. Although the test set is small, permutation tests reject the null of
“no difference” at p < 10−3, and the effect sizes and visuals across three cluster-quality indices
point to material signal. Future work will extend the pipeline to geodesic sampling, regime-
conditioned risk models, and reinforcement-learning agents that navigate the latent market
space.

A Hyperparameter Configuration

The complete hyperparameter configuration used for all experiments is detailed in Table 1.
These values were held constant across training, validation, and testing.

Table 1: Complete hyperparameter configuration used for model training.

Hyperparameter Value

Model Architecture
Input Dimension 1006
Hidden Dimension 128
Latent Dimension 12
Dropout Rate 0.1

Training Parameters
Batch Size 32
Learning Rate 1× 10−3

Max Epochs 80
Early Stopping Patience 200
Weight Decay 1× 10−4

VAE Loss Parameters
β (KL Weight) 1.0
C (KL Capacity) 4.0
λortho (Orthogonality Penalty) 1× 10−4
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